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Abstract 

The analytical solution of the one-dimensional non-linear partial differential 

equation for tidal wave propagation in the estuary can be determined using the 

perturbation method. The solution is based on the St Venantequation which consists 

of the continuity and momentum equation. This research was conducted at the 

mouth of the KarangMumus-Mahakam river which is assumed to have no bottom 

slope. A cross-differentiation between conservation of mass and conservation of 

momentum equations results in the hyperbolic differential equation. The solution is 

only limited to the second-order and the solution can also be reviewed through the 

completion of graphic visualization where the solution provides a decrease in 

deviation from the estuary to the end of the estuary. The deviation of the water level 

from the average water level gives the potential for brackish water to be utilized to 

develop aquaculture activities. 

 

Keyword: Analytical model, tidal waves, estuaries 

 

 

1.  Introduction 

The estuary is semi-enclosed coastal water, which has access to the open sea and contains seawater 

that is sufficiently measurable, its area extends to river areas, is affected by tides, and in this area, 

seawater is mixed with freshwater from rivers on land significantly[1].   

Efforts to find an analytical solution of the viscosity flow equation were started by Berre' de Saint 

Venant in 1843. Analytical solutions are one of the options for converting nonlinear partial 

differential equations to be easy to apply. In a flow system, the general equation can be simplified 

more easily than in a tidal water bodies. Rivers tend to have a more or less constant cross-section. 

Another important discovery was solving the St. Venants equation for estuaries with exponentially 

varying cross-sections. In this study, an analytical solution was developed using a one-dimensional 

model, considering several assumptions on topography and flow characteristics. In tidal hydraulics, 

the cross-section is usually assumed to be constant (rectangular, trapezoidal, or triangular) or 

variable. This general assumption is also used by Savenije[2].  

In 1998 Savenije used the Lagrangian approximation and obtained a nonlinear amplification 

equation by subtracting the highest water layer (HW) and the lowest water layer (LW) which 

maintains the quadratic velocity and periodic variation of the hydraulic radius [3]. This method is 

hereinafter referred to as the envelope method, which is a quasi-nonlinear approach because it uses 

a linear harmonic function which is a linearization method. Based on this quasi-nonlinear approach, 

an explicit solution of the tidal hydraulic equation is found, by solving a series of four implicit 

equations [4]. 

An analytical approach is also applied to other studies to predict freshwater discharge in the estuary 

based on observations of tidal levels [5]. With the same model, an explicit solution is also presented 

and applied to the mouth of the SebouMarocco river [6]. This model is then applied to the estuary 
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of the KarangMumus river, East Kalimantan by assuming the estuary area is generated by tides with 

a channel that has a bottom slope and does not consider lateral flow then analytically uses the 

method of solving non-linear partial differential equations (that is by using the perturbation 

method). order zero [7]. In this research, the perturbation method is applied to solve non-linear 

partial differential equations (nonlinear St. Venant equations) in the convergent estuaries of the 

KarangMumus Delta Mahakam river which is affected by the presence of bottom friction with a 

very small base slope and the solution approximates up to the third-order. 

 

2.  Basic Equation 

Conceptual sketches of the present model of tidal wave propagation generated by tidal force in an 

convergent estuary is presented in Figure 1, x is an axis of propagation as longitudinal coordinates 

measured from the river mouth, h is the depthof an estuary, z is level of water fluctuation, ℎ0 is the 

mean water depth at the river mouth, HW is level of high water and LW is level of low water. A 

sketch of the waves in the estuary area is after [8]as follow. 

 

 

 

 

 

 

 

 

Figure 1. Sketches of waves in anconvergent estuaries. 

 

The equation used in this study is a one-dimensional Saint Venant equation, assuming that long 

waves are generated by tides, flowing into a constant channel width with the varied depth to be 

smaller than the width, no freshwater discharge, compared to tidal discharge, and Froude number is 

set to be about two. Some parameters are used as follow: a tidal period T  is set to be the semi-

diurnal tide period,a velocity V ,  is a fluctuating deviation from mean water level,  as the water 

densityis set to be homogenous, g  is the acceleration due to gravity, hC  is Chezy’s friction factor 

as external force from the bottom, A  is the cross-sectional area of the considered channel, and𝑄 =
𝐴𝑉 as the tidal flow discharge. 
The governing equation consists of conservation of mass and momentum equations. Thesetwo 

equations are the main equations of the SaintVenantfor open channels to explain the tidal dynamics 

in the estuary in one-dimensional equations as follows 

,     (1) 

.   (2) 

 

3.  Scaling the equations 

In this section, a dimensionless processis an important physical processto guarantee that to develop 

a model will has no a dimension problem during a solving process afterward. If a model is assumed 
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to have a length variable then the dimensionless length variable is 𝑥∗can be stated following [9], 

where [x] is relevant length 

     𝑥 =  𝑥 𝑥∗.    (3) 

In this section dimensionless parameters can be identified which can be used to describe the 

characteristics of tidal waves that occur in the river estuary channel by taking certain constant 

values, where the corresponding reference value of the main quantity is adopted as a constant scale. 

The dimensionless process is stated in Table 1as follows. 

Table 1Non-dimensional processes. 

Dimensional variables Dimensionless 

variables 

*

0 xhx   
*x  

/*tt   
*t  

0

* ghVV   
*V  

*

0 hhh 
 

*h  

 0hh  
** 1 h  

This dimensionless form is needed to compare the terms in the equation when looking for a solution 

using a perturbation method. With this dimensionless form it can also be known which 

componenthas more significant valuein line with solving process, where each subsequent solution 
will maintain to be closer to the exact solution than the solution previously obtained. 

The dimensionless process of equations (1) and (2) give the following results 

,    (4) 

.   (5) 

 

4.  The perturbation method 

The perturbation theory in mathematics can be used to get a solution approach to complex 

differential equations and when the exact solution is hard to find. In general, small disturbances in 

the physical system are denoted by 𝜀, where 𝜀 is a perturbation parameter that has very little value 

or can be lesser than one. The way to get a solution approach to the perturbation method is to use 

matched asymptotic expansion. The asymptotic expansion method is defined as follow 

Definition-1 
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Coefficient doesnot depend on , consequently it can be written as 

 for .      (6) 

Functions are said as scale or gauge function [10].Gauge function is positive, monotone function 

and stands on an interval where .  The simplest form of gauge function and the most used 

is the power of  , namely . 

5.  Solution of long wave equation 

The conservation of mass conservation equation and momentum conservation equations in 

equations (3) and (4) can be uniformly written as 

,       (7) .0
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The valueof gha /0 is constant.Both equations (7) and (8) will be modified to obtain a long 

wave equation. The first step is to multiply on the equation (7) and multiply  on the equation 

obtained (8)
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  (10) 

Add these two equations above, yield 
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Differentiating equation (7) with respect to and equation (11) with respect to 𝑥∗, so it can be 

resulted a new equation 
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By cross-differentiation of equations (7) and (11), equations (12) and (13) yield 
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Because  ** 1 h  and  ** 1 V , so the equation (14) can be written as 
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The next step is to use an assumption related to the form of asymptotic expansion. Here, the 

asymptotic expansion is written in the form of 
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where
210 ,,  is a series of gauge functions, ),( *** tx is a function of variable *x and *t which 

represents solutions for zeroth, first-order, and-th-order solutions. Substitute equation (17) into 

equation (15): 
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Equation (18) can be written in the form of a zero-order linear equation )1(O , first-order )(O , 
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on condition that the boundary is at the mouth of the estuary   155.00*  and   0*  . Each of 

the above equations can be separated by variables so that the solution    ******* ),( txtx  

,Therefore, we obtain a dimensional solution of the form:  

   txtx  ),(       (22)

 
Zero-order equation )1(O  (18) can be written: 
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follows: 
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*ite          (24) 

By substituting the second derivative of equation (23) into equation (22), we get: 
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**

)1000()1000(

)1000(

)1000()1000(

)1000(
*

0

155.0155.0
155.0 jx

fj

f
fx

fj

f

e
ee

e
e

ee

e















  (32) 

The derivatives *

0 can be written as follows: 

**

**

**

2

2

1

2

2*

*

0

2

21*

*

0

21

*

0

jxfx

jxfx

jxfx

eCjeCf
x

ejCefC
x

eCeC



















    
(33)

 
 



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

 

 

216 

 
Vol. 72 No. 1 (2023) 

http://philstat.org.ph 

 

 

 

Determination of the first-order solution 
*

1 depends on the form of the zero-order solution *

0 by 

substituting equations (32) and (33) into equations (19) and 0S , the result is: 
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Based on equation (34) choose a nonhomogeneous solution 
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Substituting equation (36) and its derivatives into equation (34), we get 
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Type equation here. 
So that: 
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collect the same elements on the left side 

         *** 22222
2123 fx

f

jxfx

f eBaBfSBfeAajfASjfA   

  *222 212 jx

f eCaCjSCj                      (39) 

by balancing the coefficients in equation (38) we get 

   

22

2

2

2

22

2

1

2

22

12

2

2121

2

212

6

212

6

3

363

ajSj

Cj
C

afSf

Cf
B

ajfSjf

CCjjCfCCCf
A

f

f

f












     (4.40) 

So, the particular solution is 

   








  *** 2

22

2

1

2

22

12

2

2121

2
**

1
212

6

3

363
)( fx

f

jxfx

f

e
afSf

Cf
e

ajfSjf

CCjjCfCCCf
x
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*2

22

2

2

2

212

6 jx

f

e
ajSj

Cj


                                   (41) 

The general solution of equation (34) is a homogeneous solution plus a nonhomogeneous solution 

so that we get: 
*

1

*

1

*

1 ph    

****** 22

43

**

1 )( jxfxjxfxjxfx CeBeAeeCeCx                                       (42)
 

provided that the first-order boundary conditions  1O are   00*

1  and   01000*

1  . Substituting 

these boundary conditions into the general solution of equation (42), we get 

0)0( 0000

4

0

3

*

1  CeBeAeeCeC  dan 

0)1000( 20002000)(10001000

4

1000

3

*

1   jfjfjf CeBeAeeCeC  

So that, 

CBACC  43  dan 

 
fj

jfjff

ee

CeBeAeeCBA
C

10001000

20002000)(10001000

4







                                    (43) 

 
CBA

ee

CeBeAeeCBA
C

fj

jfjff









10001000

20002000)(10001000

3                     (44) 

To obtain a solution of the second-order equation, substituting equations (42) and (32) and their 

derivatives to the right side of equation (20), we get: 

   
   

 
  















**

**

**

**

2

12

2

12

22

1

2

2

2

212

2

1

22

2

2

1

2

42

22

24

2

424132

2

14

23

22

41

2

32

2

13

2

13

22

31

12)(63312)(3

12)(63312)(3

633663

333633

jxfx

jxfx

jxjxfx

jxfxfx

eCjfCAjfjCfCCCAjCjCAjfC

efjBCAjffCCBjCAfBfCAjfC

eCCjjCCjCCeCfjCCjfCfCC

eCCjjCCfCCeCCfCCffCC

    ** 3

1

2

1

22

1

3

1

2

1

22

1 1231212312 fxfx eBCfCBfBfCeBCfCBfBfC                       (45)

 

The homogeneous solution of equation (20) is 

jxfx

h eCeC 65

*

2   

From the simplification of the nonhomogeneous form of equation (20), it can be assumed that the 

nonhomogeneous solution is of the form: 

********** 332222*

2

jxfxjxfxjxfxjxjxfxfx

p QeZeNeMeLeKeHe                       (46)
 

the derivative of equation (46) is: 
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   

 

 

   
******

****

****

******

32322222

22222

2*

*

2

2

332

222

*

*

2

9922

44

332

222

jxfxjxfxjxfx

jxjxfxfxp

jxfxjxfx

jxfxjxjxfxfxp

QejZefNejfMejf

LejKejfHef
x

jQefZeNejf

MejfjLeKejffHe
x



























 
(47)

 

Substitute equations (46) and (47) into equation (20) so that the equation on the left side is:

 
      
      
      

  *

***

***

***

322

322222

222222

22222

327

327223

223212

3212

jx

f

fx

f

jxfx

f

jxfx

f

jx

f

jxfx

f

fx

f

eQajQSQj

efZSZaZfeNaNSjfNjf

eMaMSjfMjfeLajLSLj

eKaKSjfKjfeHafHSHf















 

The simplification of the equation on the right side is:

 
******

********

********

*******

*****

3

2

23

1

22

1

2

2

22

1

2

2

222

1

22

2

2

2

2

1

2

2

22

1

2

22

2

22

1

22

424132

2

1423

22

41

2

32

22

31

272712)(6

3312)(3

12)(633

12)(31266

333312

jxfxjxfxjxfx

jxfxjxfxjxfxjxfx

jxfxjxfxjxfxjxfx

jxfxjxfxjxjxfxjxfx

jxfxjxfxjxfxjxfxfx

CeCjeCBfCjefCAejfjC

efCCeCAjeCjCAejfC

fejBCAejffCeCBjeCAf

eBfCAejfCejCCeCfjCeCjfC

efCCeCCjejCCefCCefCC





















 

By balancing the function coefficients on the right and left sides, we get

 
   

   

   

f

f

f

f

f

f

fSaf

BfC
Z

aSjfjf

CjfCAjfjCfCCCAjCjCAjfC
N

aSjfjf

fjBCAjffCCBjCAfBfCAjfC
M

ajSj

jCC
L

aSjfjf

CfjCCjfCfCCCCjjCCfCC
K

afSf

fCC
H

327

27

223

12)(63312)(3

223

12)(63312)(3

212

12

3

663333

212

12

22

2

1

22

12

2

12

22

1

2

2

22

212

2

1

22

2

2

1

22

2

42

22

4132

2

1423

22

41

2

32

22

2

31

























 

22

2

2

327

27

ajSj

CjC
Q

f 
       (48) 

The general solution to an equation of the second order is as follows: 

  *

1

*

1

**

2 phx  

 
Thus, a specific solution is obtained 
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    ******** 222

65

**

2

jxfxjxjxfxfxjxfx MeLeKeHeeCeCx

  
**** 332 jxfxjxfx QeZeNe                      (49)

 provided that the first-order boundary conditions  2O are   00*

2  and   01000*

2  . Substituting 

these boundary conditions into a homogeneous solution of equation (49) we get 

0)0( 65

*

2  QZNMLKHCC  dan 

  jjffjf LeKeHeeCeC 2000)(100020001000

6

1000

5

*

2 )1000(

 030003000)2(1000)2(1000   jfjfjf QeZeNeMe  

Therefore : 

 QZNMLKHCC  65  

and

  

fj

jfjf

jfjjfff

ee

QeZeNe

MeLeKeHeeQZNMLKH

C
10001000

30003000)2(1000

)2(10002000)(100020001000

6











 

So, 

 

 QZNMLKH

ee

QeZeNe

MeLeKeHeeQZNMLKH

C
fj

jfjf

jfjjfff















10001000

30003000)2(1000

)2(10002000)(100020001000

5
 

From the above calculations, a second-order solution is obtained, namely:
 

  ******** 2222

65

*

2

jxfxjxfxjxjxfxfxjxfx NeMeLeKeHeeCeC
                                 (50) 

** 33 jxfx QeZe     

The solution is only limited to the second-order so that the resulting dimensionless approximation 

solution is as follows: 

     ****** 22

43

1

21

0** )( jxfxjxfxjxfxjxfx CeBeAeeCeCeCeCx 

  ********** 332222

65

2 jxfxjxfxjxfxjxjxfxfxjxfx QeZeNeMeLeKeHeeCeC  
  

                                                       (51) 

Equation (51) is then converted into a dimensional form based on Table 2 so that it is obtained: 

)()( **

0 xhx  

   

(52) 

Then substitute equation (52) into equation (21): 
tiexhtx  )(),( **

0
  

(53) 

Based on the data in the Estuary of the KarangMumus, the Mahakam River, the parameters are set 

according to Table 2. 

 

Table 2. Parameter values in theestuary of the KarangMumus,Mahakam river 

Parameters Value  Unit  

0h  10 m  

T  21600 s  

  3.14 - 

Omega (2 /T ) 0.000291 1/ s  
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Highest tide 
1.55 

m  

ManningsCoefficient 

( n ) / sediment  
0.03 3/1/ ms  

x  10000 m  

a  0.000297 - 

g  9.8 2/ sm  

𝑆𝑓 = (𝑛2/ℎ
1

3) g  
( h highest in the estuary) 

0.003902 
 

- 

  0.000297 - 

Lowest tide -1.55 m  

h at the mouth of the estuary 11.55 m  

 

The following curve shows the propagation of tidal wave tides to the end of the estuary, 

 

Figure2. Deviation curve ),( tx against distance x in different t with 10000x meters, and 

21600T seconds 

 

Figure 2 shows the movement of the tides in different seas. On the slope of the riverbed with a 

distance of meters measured from the mouth of the estuary to the end of the estuary, the tidal water 

comes at a deviation of 1.55 meters then decreases and the wave amplitude is also getting smaller, 

so that at a distance of 10000 meters. After 10000 meters it is estimated that there will be no more 

tides. This is likely to be strongly influenced by the basic friction between tidal currents and the 

bottom topography. The effect of basic friction will also change the shape of the tidal wave [11]. 

The basic friction will reduce the tidal wave energy [12]. The energy loss due to basic friction then 

causes the tidal wave height to continue to decrease. This event usually occurs in shallow waters 

(estuaries) where the velocity is constant. The decrease in height and the loss of tidal wave energy 

due to bottom friction is referred to as tidal wave damping or dumping. Strengthening due to 

resonance can occur when the tidal period approaches or corresponds to the natural period of the 

river mouth. 

 

 

x  

),( tx  
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6.  Conclusion 

The analytical solution of non-linear PDP, especially the Saint Venant in the one-dimensional 

equation, has been solved using perturbation methods. A cross-differentiation between conservation 

of mass and conservation of momentum equations results in the hyperbolic differential equation. By 

taking a solution from zero-order in the perturbation method, then the hyperbolic PDP can be 

determined by using the variable separation method. The solution is also reviewed through the 

completion of graph visualization. The solution of zero-order gives decreasing amplitude of the 

tidal wave to the end of the estuary as we expected beforehand. The deviation of water level from 

mean water level gives the potential of brackish water to be benefited to develop aquaculture 

activities. 
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